Description
Current renal organoid models derived from embryonic or induced pluripotent stem cells mimic development. Yet, few studies have attempted to generate organoids from human adult kidney to recapitulate regeneration or pathological dysregulation in vitro. Here, we report a novel expanding regenerative organoids culture system from renal cortex and medulla. Transcriptomic sequencing and immunostaining identified that these organoids share similar molecular features with kidney injury-responsive regeneration. Heterogeneous populations in organoids including cycling epithelial progenitors and differentiated cell types were identified by single cell sequencing including proximal tubules, principal cells and collecting duct (CD) progenitors that can be induced into functional CD system. Furthermore, we established polycystic organoids derived from patients that represent an advanced platform for polycystic kidney disease (PKD) modeling. By drug screening, QNZ, GSK2193874 and AMPK activators were shown to significantly reduce polycystic growth. Our results demonstrated a novel in vitro renal organoid model to study regenerating adult renal cells and PKD mechanism, providing tools for discovery of therapeutic targets.
Overall Design
Comparative gene expression profiling analysis of RNA-seq data for kidney organoids.
Curator
yq_pan